P3D Launch Sequence Study (Part IV)

Started: July 3, 1997 -- Last Update: July 9, 1997

Viktor Kudielka (ÖVSV P3D Mission Analysis Project)

Introduction

This document is intended as a base for discussion of alternative launch sequences of P3D. This part IV considers alternative launch schedules, 15. October 1997, 15. November 1997, and 15. December 1997. Although currently the conflicting requirements for the start window are not yet resolved, a separation at 12:00 UTC is assumed.

The intention is, to present scenarios with a maximum bi-propellant deltaV of approx. 1100 m/s, allowing a start mass of up to about 620 kg. The second issue is, to prevent heights of perigee below 500 km. Additional arc-jet operations at apogee are necessary for this purpose.

Previous parts:
P3D Launch Sequence Study, Part I, Dec. 5, 1996,
P3D Launch Sequence Study, Part II, Feb. 12, 1997,
P3D Launch Sequence Study, Part III, July 1, 1997


Scenario 3A

Scenario 3A is similar to scenario T3 (see part III), but with additional arc-jet operations at apogee to maintain the height of perigee above 500 km. Since the height of perigee as well as the velocity at apogee is higher, the major inclination change is slightly more expensive.

day orbit RAaN ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV mass
# # deg deg km deg km km m/s m/s m/s kg
000.5 001 018.40 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000 600.0
062.7 130 358.10 218.78 27425 0.7445 07.90 0630 41464 09961 1459 084 588.4
088.9 180 350.66 233.91 27425 0.7435 07.93 0657 41436 09939 1462 000 588.4
088.9 180 350.66 233.91 45357 0.8449 07.93 0657 77300 10224 0860 285 535.1
170.1 253 342.48 252.04 45357 0.8473 08.01 0548 77410 10311 0852 000 535.1
183.5 265 341.24 255.01 45433 0.8454 08.03 0645 77456 10234 0857 009 534.0
288.1 349 338.77 269.81 51194 0.8616 08.10 0707 88925 10234 0761 048 528.0
289.4 350 252.64 350.97 51194 0.8614 63.72 0715 88917 10227 0761 801 404.3
386.2 434 247.19 351.45 42226 0.8366 63.85 0520 71175 10302 0916 081 396.7
403.2 451 246.09 351.56 42362 0.8317 63.89 0750 71219 10121 0930 017 395.2
523.9 599 236.39 352.18 32215 0.7825 63.32 0627 51046 10071 1229 147 381.9

Figures 3A.1A and 3A.1B show the whole period of powered flight. Figures 3A.2A and 3A.2B show the final drift phase.

Summary -- Scenario 3A


Scenario 3B

Scenario 3B, due to the different ascending node, shows two effects. First, a nearly constant ArgP until about six years after the start (see figure 3B.2A). Second, a significant minimum in height of perigee around three years after start (see figure 3B.2B). More fine-tuning will be necessary to keep height of perigee also during the "final" drift phase above 500 km.

day orbit RAaN ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV mass
# # deg deg km deg km km m/s m/s m/s kg
000.5 001 048.40 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000 600.0
058.0 121 029.59 215.89 27206 0.7427 07.98 0622 41034 09961 1471 078 589.2
094.2 191 019.14 237.07 27206 0.7418 08.05 0648 41008 09941 1474 000 589.2
094.2 191 019.14 237.07 44768 0.8444 08.05 0648 76132 10226 0871 285 535.8
169.5 260 013.08 252.45 44768 0.8444 08.29 0586 76194 10275 0867 000 535.8
177.1 267 012.68 253.87 44812 0.8440 08.32 0611 76256 10255 0867 005 535.2
294.6 362 010.45 269.84 51266 0.8599 08.54 0802 88974 10162 0765 054 528.4
295.9 363 284.37 350.55 51266 0.8601 64.81 0794 88982 10168 0765 816 402.5
343.3 401 282.10 350.53 46799 0.8485 64.53 0710 80132 10196 0835 036 399.1
356.1 412 281.40 350.54 46897 0.8458 64.66 0855 80183 10086 0843 011 398.1
525.8 605 269.01 350.56 32202 0.7855 64.14 0529 51119 10151 1219 191 380.8

Figures 3B.1A and 3B.1B show the whole period of powered flight. Figures 3B.2A and 3B.2B show the final drift phase.

Summary -- Scenario 3B


Scenario 3C

Scenario 3C shows the two effects, which were already obvious in scenario 3B, even more pronounced. Corrective action is shown at the end of the powered phases, where the height of perigee is increased to 1000 km, in order to compensate for the later decrease.

day orbit RAaN ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV mass
# # deg deg km deg km km m/s m/s m/s kg
000.5 001 078.40 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000 600.0
055.5 116 060.28 214.41 27086 0.7416 08.00 0621 40794 09959 1478 074 589.6
091.4 186 049.64 235.75 27086 0.7402 08.07 0658 40756 09929 1482 000 589.6
091.4 186 049.64 235.75 44408 0.8416 08.07 0658 75402 10214 0879 285 536.2
165.8 255 043.65 251.06 44408 0.8423 08.38 0626 75435 10239 0877 000 536.2
173.3 262 043.19 252.46 44452 0.8414 08.41 0671 75477 10205 0879 005 535.6
280.1 350 038.50 269.83 51239 0.8595 08.68 0823 88899 10145 0767 058 528.4
281.5 351 312.30 350.48 51239 0.8596 65.80 0816 88906 10151 0766 829 400.8
496.4 580 298.15 349.48 32217 0.7850 64.85 0549 51129 10135 1221 226 380.1
523.2 620 295.61 349.26 32482 0.7716 64.91 1040 51167 09756 1258 041 376.5
526.6 625 295.31 349.26 32220 0.7701 64.95 1028 50655 09760 1268 005 376.1

Figures 3C.1A and 3C.1B show the whole period of powered flight. Figures 3C.2A and 3C.2B show the final drift phase.

Summary -- Scenario 3C


Scenario 3R

Scenario 3R is a modification of 3A, by increasing the major inclination change by just 2°, to the effect, that we can expect a reentry after 21.5 years.

day orbit RAaN ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV mass
# # deg deg km deg km km m/s m/s m/s kg
000.5 001 018.40 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000 600.0
062.7 130 358.10 218.78 27425 0.7445 07.90 0630 41464 09961 1459 084 588.4
099.3 200 347.66 239.96 27425 0.7434 07.94 0659 41434 09937 1463 000 588.4
099.3 200 347.66 239.96 45353 0.8448 07.94 0659 77290 10222 0860 285 535.1
172.8 266 340.23 256.34 45353 0.8473 07.98 0546 77404 10313 0852 000 535.1
188.4 280 338.76 259.82 45442 0.8454 07.99 0645 77482 10234 0857 010 533.8
255.8 336 336.90 270.00 50227 0.8607 08.02 0618 87080 10296 0771 041 528.8
257.1 337 250.58 351.20 50227 0.8609 65.78 0610 87088 10303 0770 834 400.5
293.8 367 248.91 351.15 46716 0.8513 64.99 0567 80109 10308 0828 029 397.8
318.3 388 247.68 351.10 46903 0.8445 64.85 0913 80137 10042 0846 020 395.9
488.8 582 235.89 350.54 32184 0.7813 64.94 0661 50950 10043 1233 193 378.4

Figures 3R.1A and 3R.1B show the whole period of powered flight. Figures 3R.2A and 3R.2B show the final drift phase.

Summary -- Scenario 3R


Summary Part IV

Arc-jet operation is best suited for in-line velocity changes at apogee and perigee. Since major inclination changes should be done at a certain argument of perigee, the bi-propellant motor is the only choice. With the ratios of propellant masses given by the available tanks, the only (?) strategy left is, to increase the orbital period by the arc-jet until the velocity at apogee is low enough to allow the wanted inclination changes with the bi-propellant motor. Since at low inclinations the sun-angle restricts the arc-jet operation (in spin mode), and the elapsed time is also of importance, some major part of the orbital period increase must be done also by the bi-propellant motor. Fine-tuning is necessary as soon as the start window is fixed. Time and size of the orbital period increase with the bi-propellant motor are the two variables to play with.

Maintaining the perigee height above 500 km has to be an integral part of the other operations, since a significant time span is required for the arc-jet operations - assuming one hour per orbit operations. On the other hand, the expense for the inclination changes increases with the height of perigee. A proper compromise has to be found.

With some more fine-tuning one can expect, that the bi-propellant deltaV requirement will be about 1100 m/s (without any contingencies). This would allow a start mass of slightly more than 600 kg. The elapsed time for the whole phase of orbital changes is in the order of 1.5 years. Three axis stabilized operation might be envisaged after the major inclination change, that is, 9 to 10 months after start. Since arc-jet operations are continuing, the power budget for transponder usage will be restricted.

The presented figures are still optimistic, since the lower efficiency of the arc-jet due to the geometry at perigee and apogee is not yet taken into account. A preliminary estimate for a one hour period at perigee of an 11 hour orbit (eccentricity = .8) yields an efficiency better than .9 . The situation at apogee is much better and we could probably plan for a two or three hour operation, when we are in three-axis stabilized mode with fully expanded panels. This will depend on the total power budget and the battery capacities.


Dr. Viktor Kudielka, OE1VKW
viktor.kudielka@ieee.org