Started: July 3, 1997 -- Last Update: July 9, 1997
Viktor Kudielka (ÖVSV P3D Mission Analysis Project)
This document is intended as a base for discussion of alternative launch sequences of P3D. This part IV considers alternative launch schedules, 15. October 1997, 15. November 1997, and 15. December 1997. Although currently the conflicting requirements for the start window are not yet resolved, a separation at 12:00 UTC is assumed.
The intention is, to present scenarios with a maximum bi-propellant deltaV of approx. 1100 m/s, allowing a start mass of up to about 620 kg. The second issue is, to prevent heights of perigee below 500 km. Additional arc-jet operations at apogee are necessary for this purpose.
Previous parts:
P3D Launch Sequence Study, Part I, Dec. 5, 1996,
P3D Launch Sequence Study, Part II, Feb. 12, 1997,
P3D Launch Sequence Study, Part III, July 1, 1997
Scenario 3A is similar to scenario T3 (see part III), but with additional arc-jet operations at apogee to maintain the height of perigee above 500 km. Since the height of perigee as well as the velocity at apogee is higher, the major inclination change is slightly more expensive.
day | orbit | RAaN | ArgP | sma | ecc | inc | HeightPer | HeightApo | VPer | VApo | deltaV | mass |
# | # | deg | deg | km | deg | km | km | m/s | m/s | m/s | kg | |
000.5 | 001 | 018.40 | 178.00 | 24611 | 0.7175 | 07.76 | 0575 | 35890 | 09922 | 1632 | 000 | 600.0 |
062.7 | 130 | 358.10 | 218.78 | 27425 | 0.7445 | 07.90 | 0630 | 41464 | 09961 | 1459 | 084 | 588.4 |
088.9 | 180 | 350.66 | 233.91 | 27425 | 0.7435 | 07.93 | 0657 | 41436 | 09939 | 1462 | 000 | 588.4 |
088.9 | 180 | 350.66 | 233.91 | 45357 | 0.8449 | 07.93 | 0657 | 77300 | 10224 | 0860 | 285 | 535.1 |
170.1 | 253 | 342.48 | 252.04 | 45357 | 0.8473 | 08.01 | 0548 | 77410 | 10311 | 0852 | 000 | 535.1 |
183.5 | 265 | 341.24 | 255.01 | 45433 | 0.8454 | 08.03 | 0645 | 77456 | 10234 | 0857 | 009 | 534.0 |
288.1 | 349 | 338.77 | 269.81 | 51194 | 0.8616 | 08.10 | 0707 | 88925 | 10234 | 0761 | 048 | 528.0 |
289.4 | 350 | 252.64 | 350.97 | 51194 | 0.8614 | 63.72 | 0715 | 88917 | 10227 | 0761 | 801 | 404.3 |
386.2 | 434 | 247.19 | 351.45 | 42226 | 0.8366 | 63.85 | 0520 | 71175 | 10302 | 0916 | 081 | 396.7 |
403.2 | 451 | 246.09 | 351.56 | 42362 | 0.8317 | 63.89 | 0750 | 71219 | 10121 | 0930 | 017 | 395.2 |
523.9 | 599 | 236.39 | 352.18 | 32215 | 0.7825 | 63.32 | 0627 | 51046 | 10071 | 1229 | 147 | 381.9 |
Figures 3A.1A and 3A.1B show the whole period of powered flight. Figures 3A.2A and 3A.2B show the final drift phase.
Scenario 3B, due to the different ascending node, shows two effects. First, a nearly constant ArgP until about six years after the start (see figure 3B.2A). Second, a significant minimum in height of perigee around three years after start (see figure 3B.2B). More fine-tuning will be necessary to keep height of perigee also during the "final" drift phase above 500 km.
day | orbit | RAaN | ArgP | sma | ecc | inc | HeightPer | HeightApo | VPer | VApo | deltaV | mass |
# | # | deg | deg | km | deg | km | km | m/s | m/s | m/s | kg | |
000.5 | 001 | 048.40 | 178.00 | 24611 | 0.7175 | 07.76 | 0575 | 35890 | 09922 | 1632 | 000 | 600.0 |
058.0 | 121 | 029.59 | 215.89 | 27206 | 0.7427 | 07.98 | 0622 | 41034 | 09961 | 1471 | 078 | 589.2 |
094.2 | 191 | 019.14 | 237.07 | 27206 | 0.7418 | 08.05 | 0648 | 41008 | 09941 | 1474 | 000 | 589.2 |
094.2 | 191 | 019.14 | 237.07 | 44768 | 0.8444 | 08.05 | 0648 | 76132 | 10226 | 0871 | 285 | 535.8 |
169.5 | 260 | 013.08 | 252.45 | 44768 | 0.8444 | 08.29 | 0586 | 76194 | 10275 | 0867 | 000 | 535.8 |
177.1 | 267 | 012.68 | 253.87 | 44812 | 0.8440 | 08.32 | 0611 | 76256 | 10255 | 0867 | 005 | 535.2 |
294.6 | 362 | 010.45 | 269.84 | 51266 | 0.8599 | 08.54 | 0802 | 88974 | 10162 | 0765 | 054 | 528.4 |
295.9 | 363 | 284.37 | 350.55 | 51266 | 0.8601 | 64.81 | 0794 | 88982 | 10168 | 0765 | 816 | 402.5 |
343.3 | 401 | 282.10 | 350.53 | 46799 | 0.8485 | 64.53 | 0710 | 80132 | 10196 | 0835 | 036 | 399.1 |
356.1 | 412 | 281.40 | 350.54 | 46897 | 0.8458 | 64.66 | 0855 | 80183 | 10086 | 0843 | 011 | 398.1 |
525.8 | 605 | 269.01 | 350.56 | 32202 | 0.7855 | 64.14 | 0529 | 51119 | 10151 | 1219 | 191 | 380.8 |
Figures 3B.1A and 3B.1B show the whole period of powered flight. Figures 3B.2A and 3B.2B show the final drift phase.
Scenario 3C shows the two effects, which were already obvious in scenario 3B, even more pronounced. Corrective action is shown at the end of the powered phases, where the height of perigee is increased to 1000 km, in order to compensate for the later decrease.
day | orbit | RAaN | ArgP | sma | ecc | inc | HeightPer | HeightApo | VPer | VApo | deltaV | mass |
# | # | deg | deg | km | deg | km | km | m/s | m/s | m/s | kg | |
000.5 | 001 | 078.40 | 178.00 | 24611 | 0.7175 | 07.76 | 0575 | 35890 | 09922 | 1632 | 000 | 600.0 |
055.5 | 116 | 060.28 | 214.41 | 27086 | 0.7416 | 08.00 | 0621 | 40794 | 09959 | 1478 | 074 | 589.6 |
091.4 | 186 | 049.64 | 235.75 | 27086 | 0.7402 | 08.07 | 0658 | 40756 | 09929 | 1482 | 000 | 589.6 |
091.4 | 186 | 049.64 | 235.75 | 44408 | 0.8416 | 08.07 | 0658 | 75402 | 10214 | 0879 | 285 | 536.2 |
165.8 | 255 | 043.65 | 251.06 | 44408 | 0.8423 | 08.38 | 0626 | 75435 | 10239 | 0877 | 000 | 536.2 |
173.3 | 262 | 043.19 | 252.46 | 44452 | 0.8414 | 08.41 | 0671 | 75477 | 10205 | 0879 | 005 | 535.6 |
280.1 | 350 | 038.50 | 269.83 | 51239 | 0.8595 | 08.68 | 0823 | 88899 | 10145 | 0767 | 058 | 528.4 |
281.5 | 351 | 312.30 | 350.48 | 51239 | 0.8596 | 65.80 | 0816 | 88906 | 10151 | 0766 | 829 | 400.8 |
496.4 | 580 | 298.15 | 349.48 | 32217 | 0.7850 | 64.85 | 0549 | 51129 | 10135 | 1221 | 226 | 380.1 |
523.2 | 620 | 295.61 | 349.26 | 32482 | 0.7716 | 64.91 | 1040 | 51167 | 09756 | 1258 | 041 | 376.5 |
526.6 | 625 | 295.31 | 349.26 | 32220 | 0.7701 | 64.95 | 1028 | 50655 | 09760 | 1268 | 005 | 376.1 |
Figures 3C.1A and 3C.1B show the whole period of powered flight. Figures 3C.2A and 3C.2B show the final drift phase.
Scenario 3R is a modification of 3A, by increasing the major inclination change by just 2°, to the effect, that we can expect a reentry after 21.5 years.
day | orbit | RAaN | ArgP | sma | ecc | inc | HeightPer | HeightApo | VPer | VApo | deltaV | mass |
# | # | deg | deg | km | deg | km | km | m/s | m/s | m/s | kg | |
000.5 | 001 | 018.40 | 178.00 | 24611 | 0.7175 | 07.76 | 0575 | 35890 | 09922 | 1632 | 000 | 600.0 |
062.7 | 130 | 358.10 | 218.78 | 27425 | 0.7445 | 07.90 | 0630 | 41464 | 09961 | 1459 | 084 | 588.4 |
099.3 | 200 | 347.66 | 239.96 | 27425 | 0.7434 | 07.94 | 0659 | 41434 | 09937 | 1463 | 000 | 588.4 |
099.3 | 200 | 347.66 | 239.96 | 45353 | 0.8448 | 07.94 | 0659 | 77290 | 10222 | 0860 | 285 | 535.1 |
172.8 | 266 | 340.23 | 256.34 | 45353 | 0.8473 | 07.98 | 0546 | 77404 | 10313 | 0852 | 000 | 535.1 |
188.4 | 280 | 338.76 | 259.82 | 45442 | 0.8454 | 07.99 | 0645 | 77482 | 10234 | 0857 | 010 | 533.8 |
255.8 | 336 | 336.90 | 270.00 | 50227 | 0.8607 | 08.02 | 0618 | 87080 | 10296 | 0771 | 041 | 528.8 |
257.1 | 337 | 250.58 | 351.20 | 50227 | 0.8609 | 65.78 | 0610 | 87088 | 10303 | 0770 | 834 | 400.5 |
293.8 | 367 | 248.91 | 351.15 | 46716 | 0.8513 | 64.99 | 0567 | 80109 | 10308 | 0828 | 029 | 397.8 |
318.3 | 388 | 247.68 | 351.10 | 46903 | 0.8445 | 64.85 | 0913 | 80137 | 10042 | 0846 | 020 | 395.9 |
488.8 | 582 | 235.89 | 350.54 | 32184 | 0.7813 | 64.94 | 0661 | 50950 | 10043 | 1233 | 193 | 378.4 |
Figures 3R.1A and 3R.1B show the whole period of powered flight. Figures 3R.2A and 3R.2B show the final drift phase.
Maintaining the perigee height above 500 km has to be an integral part of the other operations, since a significant time span is required for the arc-jet operations - assuming one hour per orbit operations. On the other hand, the expense for the inclination changes increases with the height of perigee. A proper compromise has to be found.
With some more fine-tuning one can expect, that the bi-propellant deltaV requirement will be about 1100 m/s (without any contingencies). This would allow a start mass of slightly more than 600 kg. The elapsed time for the whole phase of orbital changes is in the order of 1.5 years. Three axis stabilized operation might be envisaged after the major inclination change, that is, 9 to 10 months after start. Since arc-jet operations are continuing, the power budget for transponder usage will be restricted.
The presented figures are still optimistic, since the lower efficiency of the arc-jet due to the geometry at perigee and apogee is not yet taken into account. A preliminary estimate for a one hour period at perigee of an 11 hour orbit (eccentricity = .8) yields an efficiency better than .9 . The situation at apogee is much better and we could probably plan for a two or three hour operation, when we are in three-axis stabilized mode with fully expanded panels. This will depend on the total power budget and the battery capacities.