P3D Launch Sequence Study (Part III)

Started: June 21, 1997 -- Last Update: July 1, 1997

Viktor Kudielka (ÖVSV P3D Mission Analysis Project)

Introduction

This document is intended as a base for discussion of alternative launch sequences of P3D. This part III considers the new launch schedules as well as changes of S/C and propellant masses.

Previous parts:
P3D Launch Sequence Study, Part I, Dec. 5, 1996,
P3D Launch Sequence Study, Part II, Feb. 12, 1997


Start Data

Nominal DeltaV

  1. Arc-jet first: 4750 ln(600/548) + 3000 ln(548/356) = 430.6 + 1294 = 1724.6 m/s
  2. Bi-prop first: 3000 ln(600/408) + 4750 ln(408/356) = 1157 + 647.6 = 1804.6 m/s

Worst Case DeltaV

  1. Arc-jet first: 4750 ln(650/598) + 3000 ln(598/406) = 396 + 1161.7 = 1557.7 m/s
  2. Bi-prop first: 3000 ln(650/458) + 4750 ln(458/406) = 1050.3 + 572.4 = 1622.7 m/s

Scenario S1

This scenario serves as a demonstration only, since impulsive mamoeuvers are assumed exclusively. The ideal target argP=315° is reached after about 1 year. The inclination of 61° at RAAN=230° makes shure, that an ArgP= 315° +/- 15° is maintained for about 11 years. The apogee will stay much longer (> 25 years) over the northern hemisphere. The height of perigee will increase to 8000 km. Other start times or dates will cause a substantial different behaviour.

The following table presents details of the powered flight phase.

Orbit ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV
# deg km deg km km m/s m/s m/s
001 178.00 24611 0.7175 07.76 575 35890 09922 1632 0000
003 178.66 24611 0.7174 07.77 577 35888 09920 1632 0000
003 178.66 32223 0.7841 07.77 577 51113 10111 1223 0191
008 180.16 32223 0.7838 07.78 589 51101 10102 1225 0000
009 180.14 32223 0.7838 39.81 590 51101 10102 1225 0676
570 270.16 32223 0.7842 38.30 577 51113 10112 1223 0000
571 315.02 32223 0.7841 61.25 579 51111 10110 1224 1073

Figures S1.1A and S1.1B show the whole period of powered flight. Figures S1.2A and S1.2B show the final drift phase.

Summary -- Scenario S1


Scenario T1

This scenario is an attempt to find a proper balance of bi-prop and arc-jet operation. In addition the required deltaV is kept low, by compromising on the trend of ArgP during the final drift phase and also on the time needed for the orbital manoeuvers. Arc-jet operation is assumed to be in one hour intervals around perigee. The reduced efficiency due to the misalignment of flight path and spin axis is not yet taken into account.

Orbit ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV
# deg km deg km km m/s m/s m/s
0001 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000
0008 180.28 24611 0.7172 07.77 0582 35883 09917 1633 000
0009 180.30 24611 0.7172 21.77 0583 35883 09916 1633 398
1709 270.02 51260 0.8686 21.82 0356 89409 10517 0739 420
1710 335.00 51260 0.8685 61.53 0363 89401 10511 0740 728
2060 337.23 32195 0.7705 64.15 1012 50621 09772 1267 229

Figures T1.1A and T1.1B show the whole period of powered flight. Figures T1.2A and T1.2B show the final drift phase.

Summary -- Scenario T1


Scenario T2

The major drawback of scenario T1 is the very long time for the initial orbital manoeuvers. When we insist on the major inclination change at the first occurence of ArgP = 270°, we have to use the bi-prop motor for increasing the orbital period. In order to minimize the necessary bi-prop mass, we drop the initial inclination increase (for adjusting the argP) alltogether and start with an apogee very near the equator. We have to increase the orbital period as much as possible (assuming 89000 km height of apogee is the maximum for reliable operation) in order to use the arc-jet after the major inclination change for reducing the period to 16 hours. Most probably we could terminate the spin mode already after 130 days.

The final drift period does not look very attractive, but since some propellant for the arc-jet might be left, we can investigate a further orbital refinement later.

Orbit ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV
# deg km deg km km m/s m/s m/s
0001 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000
0295 269.25 27400 0.7434 07.82 0654 41390 09941 1463 083
0297 269.88 51172 0.8626 07.82 0652 88937 10277 0758 334
0300 351.25 51172 0.8626 63.31 0652 88936 10277 0758 792
0528 352.59 32200 0.7892 63.69 0411 51232 10249 1208 223

Figures T2.1A and T2.1B show the whole period of powered flight. Figures T2.2A and T2.2B show the final drift phase.

Summary -- Scenario T2


Scenario T3

While T2 represents the attempt to reduce the elapsed time drastically, T3 demonstrates that a further reduction of the bi-pro deltaV requirements is possible. Arc-jet operations are assumed to last for one hour around perigee. ArgP is for a pretty long period near the equator, this is the price for the minimum bi-prop deltaV. Height of perigee is also low after the major inclination change. For an actual case some more refinements are necessary.

Orbit ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV
# deg km deg km km m/s m/s m/s
0001 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000
0129 218.63 27400 0.7442 07.83 0632 41412 09959 1461 083
0179 233.86 45279 0.8445 07.85 0661 77141 10220 0861 285
0322 270.00 51248 0.8666 07.77 0458 89281 10433 0746 049
0323 351.30 51248 0.8668 63.30 0450 89289 10439 0745 779
0551 353.44 32199 0.7940 62.58 0254 51388 10384 1192 221

Figures T3.1A and T3.1B show the whole period of powered flight. Figures T3.2A and T3.2B show the final drift phase.

Summary -- Scenario T3


Scenario T4

Scenario T4 uses the same strategy as T3 to go to a 32 hour orbit within the 90 degree drift of ArgP. Additionally there is a small (3 degrees) inclination change at ArgP = 180°, in order to get the apogee a little further north after the major inclination change. The size of this initial inclination change is restricted by the available mass of bi-propellant.

Orbit ArgP sma ecc inc HeightPer HeightApo VPer VApo deltaV
# deg km deg km km m/s m/s m/s
0001 178.00 24611 0.7175 07.76 0575 35890 09922 1632 000
0008 180.28 24611 0.7172 07.77 0582 35883 09917 1633 000
0009 180.48 24611 0.7172 10.77 0583 35883 09916 1633 086
0126 217.06 27214 0.7424 10.81 0632 41040 09954 1471 078
0176 232.17 45286 0.8446 10.81 0658 77159 10223 0861 290
0314 270.13 51234 0.8669 10.65 0439 89273 10448 0745 049
0315 348.09 51234 0.8668 63.51 0447 89265 10441 0745 779
0538 349.99 32193 0.7899 62.82 0385 51245 10271 1205 222

Figures T4.1A and T4.1B show the whole period of powered flight. Figures T4.2A and T4.2B show the final drift phase.

Summary -- Scenario T4


Dr. Viktor Kudielka, OE1VKW
viktor.kudielka@ieee.org